Investigating the mechanisms of focused ultrasound mediated neural plasticity using magnetic resonance spectroscopy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magnetic resonance spectroscopy (MRS) is a technique that non-invasively measures molecular metabolite concentrations in the brain. MRS has been shown to be able to detect changes in excitatory and inhibitory neurotransmitter levels following the application of neuromodulatory techniques that target superficial regions of the brain like transcranial magnetic or electric stimulation.

Transcranial focused ultrasound (TUS) is an emerging technique that can modulate brain activity in deep brain regions with high spatial specificity. The biomechanisms by which TUS induces excitatory or inhibitory activity are still poorly understood. Combining TUS with MRS can shed light on how TUS affects measures of neurotransmission and help us understand the effects of TUS on cognition and behaviour in deep brain regions.

This research project aims to further our understanding of the bioeffects of TUS neuromodulation at the molecular level. We plan to quantify changes in excitatory (Glutamate) and inhibitory (GABA) neurotransmitter levels in specific brain regions using MRS after applying TUS to these regions. This project will inform our future studies on understanding decision making in humans. We plan to investigate the effect of TUS neuromodulation on key regions involved in decision-making (e.g. the anterior cingulate cortex and medial prefrontal cortex).

We are currently recruiting healthy volunteers for this study. If you are interested in taking part, please see the "Get involved" page for details!

HeaderImg.jpg
MRS1.jpg
MRS2.png

Left: TUS beam (in colour) and proposed MRS measurement location (in white) on a structural MR image. Right: MRS spectrum showing relative neurotransmitter levels.